

M/RS 2020

Dr. Justin I. Simon Return Sample Scientist NASA Johnson Space Center

Why do scientists explore Mars?

- Mars has geologic features similar to Earth.
- Water once flowed on Mars.
- We want to know if Mars could have once supported ancient life forms (and how we could live there).

How do scientists study planetary objects in our Solar System?

Put your answers in the chat.

How do scientists study planetary objects in our Solar System?

- Observations from telescopes on Earth
- Measurements from orbiters ('spacecraft')
- Measurements from robotic landers and rovers
- Collect and study meteorites
- Robotic geologists and astronauts collect and return samples

Where do meteorites come from?

Martian meteorites are knocked off from the impact of these objects.

Painting by Don Davis. Copyright SETI Institute, 1994

Credit: NASA

Meteorites fall lots of places on Earth, but we've had a lot of success finding dark rocks on light ice

Softball-sized carbonaceous chondrite ("protoplanetary disk sediment")

Meteor Crater, Arizona

8 kg (17 lbs) martian meteorite found in Antarctica

Images = Cascadia Meteorite Laboratory

Each photomicrograph is 2.8 mm across.

Antarctic Martian Meteorite

"Sheared" black outer fusion crust from atmospheric entry

Mixture of primitive meteorite +/- sedimentary martian surface rock (and altered on Earth too before collection)

We have found many meteorites & learned a lot from them, but their travels to Earth can be pretty rough!

If we want more pristine rock samples we have to go get them...!

Apollo Missions to the Moon

Apollo 17, Dec. 1972

ASTEROID SAMPLE RETURN MISSION

September 2016

OSIRIS-REx

Asteroid Bennu 2023 (planned) Regolith

Bennu, a carbon-bearing asteroid, is ~0.48 km in diameter

This is an artist's rendition

This is real (Aug. 11th dress rehearsal ~ to our successful sample collection Oct. 21st, 2020)

The Three-Mission Mars Sample Return Campaign

Sample Collection (Mars 2020)

we are here

Mars Ascent Vehicle (MAV) launches Orbiting Sample (OS)

These are artists' renditions

Mars Orbiter captures OS and brings it back to Earth

Introducing the Mars 2020 Rover Perseverance, our Scientific Adventure Begins

Mars 2020 Perseverance

GOALS:

- Identify past environments capable of supporting microbial life
- Seek signs of possible past microbial life in those habitable environments
- Collect rock core and "soil" samples and store them on the martian surface
- Test oxygen production from the martian atmosphere

Terrestrial Biological Time Line

Modern Stromatolites: Shark Bay

BASIC NEEDS OF A LIVING ORGANISM

Water, energy, nutrients, and clement environment (e.g., reasonable temperature)

Likely geological places to find life:

- Near or in bodies of water
- Near volcanoes and other geothermal heat sources
- In partially melted subsurface ices

E. Coli on International Space Station

EVIDENCE OF PAST LIFE ON EARTH

Classic Fossils: Less than ~650 million years old

Microbial Biosignatures: up to 3.6 billion years old

On Mars we would be looking for evidence of past life... looking for evidence in data such as... (see next slide!)

How might we detect ancient, possibly non-Earthlike life?

¹³C/¹²C ¹⁸O/¹⁶O

isotopes

organic molecules

biominerals

physical & chemical structures in rocks

4 Landing Site Selection Workshops 1st in 2014: many landing sites 2nd in 2015: >20 landing sites 3rd in 2017: 8 landing sites 4th in 2018: 3 final landing sites

Ľ,

Where should Mars 2020 go...?

ng sites	Landing Site Scientific Selection Criteria											
sites ding sites	CHARACTERIZABLE GEOLOGIC SETTING & HISTORY		ANCIENT HABITABLE ENVIRONMENT		HIGH BIOSIGNATURE PRESERVATION POTENTIAL		ASTROBIOLOGICAL QUALITY OF RETURNED SAMPLES		PETROLOGICAL QUALITY OF RETURNED SAMPLES		AVERAGE	
Site	mode	average	mode	average	mode	average	mode	average	mode	average	mode	average
ezero	5	4.9	5	4.7	5	4.4	5	4.4	5	4.3	5	4.5
Columbia Hills	5	4.7	5	4.3	5	4.3	3	3.8	5	4.1	4.6	4.2
NE Syrtis	5	4.7	5	3.8	3	3.3	5	3.8	5	4.8	4.6	4.1
Eberswalde	5	5.0	5	4.5	5	4.3	3	3.4	3	3.0	4.2	4.0
SW Melas	5	4.5	5	4.1	5	3.9	3	3.6	3	3.1	4.2	3.9
Nili Fossae Trough (N)	5	4.4	3	3.4	3	3.2	3	3.4	5	4.7	3.8	3.8
Nili Fossae Carbonate	5	4.2	3	3.4	3	3.2	3	3.2	5	4.3	3.8	3.7
Mawrth	5	4.3	3	3.7	3	2.9	3	3.4	5	3.9	3.8	3.6
Holden Crater	5	4.4	3	3.4	3	3.2	3	3.2	3	3.4	3.4	3.5
McLaughlin	3	3.6	3	3.9	3	3.0	3	3.5	3	3.5	3	3.5
Hypanis	3	3.8	3	3.6	3	3.1	3	3.0	3	2.8	3	3.2
Nili Fossae Trough (S)	3	3.8	3	2.9	3	2.6	3	2.9	3	3.9	3	3.2
adon Valles	3	3.8	3	3.3	3	3.1	3	2.7	3	2.7	3	3.1
E. Margaritifer	3	3.7	3	3.1	3	3.5	3	2.7	3	2.7	3	3.1
Coprates Chasma	5	4.1	3	2.7	3	2.3	3	2.5	3	3.7	3.4	3.1
Dyama Crater	3	3.3	3	3.2	3	2.8	3	2.7	3	3.1	3	3.0
Eridania	3	3.2	3	2.8	3	2.5	3	2.3	3	2.4	3	2.6
Nili Patera	5	4.6	3	2.4	3	2.5	1	1.4	3	2.2	3	2.6
Oxia Planum	3	3.0	3	2.4	1	2.1	1	2.1	3	2.7	2.2	2.5
Sabrina/Magong Crater	3	3.1	3	3.0	3	2.2	1	1.8	1	2.0	2.2	2.4
Hadriacus Palus	3	3.2	3	2.5	1	1.5	1	1.6	3	2.8	2.2	2.3

4 Landing Site Selection Workshops 1st in 2014: many landing sites 2nd in 2015: >20 landing sites 3rd in 2017: 8 landing sites 4th in 2018: 3 final landing sites

a

Top three landing sites...

	Landing Site Scientific Selection Criteria											
CHARACTERIZABLE A GEOLOGIC SETTING H & HISTORY ENV		AN HAB ENVIR	CIENT BITABLE ONMENT	HIGH BIOSIGNATURE PRESERVATION POTENTIAL		ASTROBIOLOGICAL QUALITY OF RETURNED SAMPLES		PETRO QUA RET SAI	DLOGICAL LITY OF URNED MPLES	AVERAGE		
mode	average	mode	average	mode	average	mode	average	mode	average	mode	average	

MARS 2020 ROVER FINAL THREE LANDING SITES

Columbia Hills (Gusev Crater)

2	
	Site
1	Jezero
2	Columbia Hills
3	NE Syrtis
4	Eberswalde
5	SW Melas
6	Nili Fossae Trough (N)
7	Nili Fossae Carbonate
8	Mawrth
9	Holden Crater
LO	McLaughlin
L1	Hypanis
L2	Nili Fossae Trough (S)
L3	Ladon Valles
L4	E. Margaritifer
L5	Coprates Chasma
L6	Oyama Crater
L7	Eridania
18	Nili Patera
19	Oxia Planum
20	Sabrina/Magong Crater
21	Hadriacus Palus

FINAL 3 LANDING SITE CHOICES

Choice 1: Jezero Crater

• Data indicates this area once had river channels and lakes filling the now "dry" crater.

Choice 2: Columbia Hills, Gusev Crater

- Previously explored by the Mars Spirit Rover.
- Evidence of past hot springs.

Choice 3: NE Syrtis

- Associated with past volcanic activity.
- Evidence of past hot springs, surface ice melting, layered terrain.

What makes each of these sites good landing sites for the Mars 2020 Rover?

Put your answers in the chat.

Perseverance Landing Site: Jezero Crater (winner)

Jezero Crater Context

Utopia Planitia

Nili Fossae Hargraves crater Jezero crater

Syrtis Major (3.5-3.8 billion years old) Isidis impact basin (~3.9 billion years ago)

2

Value High : 4375 Low : -5846

Credit: NASA

Anatomy of Jezero crater and its deposits

Delta Deposit Inside Jezero Crater

HRSC topography overlain on CTX mosaic

Jet Propulsion Laboratory California Institute of Technology

River deltas are environments teeming with microbial life

Alaska runoff, NOAA

CARGO

February 18, 2021

9 days

LANDING

Credit: NASA

"Ingenuity" Helicopter

I named the Mars Helicopter -Vaneeza

Image from NASA Article. Image Credit: Rupani Family

4 lb 4 ft rotor, 2400 RPM Solar-powered 2 cameras

MARS 2020 ROVER NEW LANDING TECHNIQUE

Take descent photos
Compare to orbital map
Divert if necessary

mars.nasa.gov Landing February 18, 2021

Mobility System

Perseverance is the fastest rover to date and we need this to have enough time to find and collect samples

Mastcam-Z

MAIN JOB:

Take high-definition video, panoramic color & 3D images of the surface & more!

MAIN JOB:

Identify the chemical composition of the rocks and soils including their atomic & molecular makeup.

Planetary Instrument for X-ray Lithochemistry (PIXL)

MAIN JOB:

Measure the chemical makeup of rocks at a very fine scale. (sub-mm scales)

Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC)

MAIN JOB:

Fine-scale detection of minerals, organic molecules, and potential biosignatures.

Wide Angle Topographic Sensor for Operations and eNgineering (WATSON)

MAIN JOB:

Camera that will take closeup pictures of rock textures. Will work closely with the SHERLOC instrument.

SHERLOC, WATSON, and PIXL Work Together

2.72 Ga Stromatolites (Fortescue Gp., Western Australia) Above: outcrop. Below: cut slab

Radar Imager for Mars' Subsurface Experiment (RIMFAX)

MAIN JOB:

To see geologic features under the surface with ground-penetrating radar.

Mars Environmental Dynamics Analyzer (MEDA)

MAIN JOB:

To measure weather (such as wind speed & direction, temperature, humidity) and monitor dust in the atmosphere.

Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE)

MAIN JOB:

To produce oxygen from the Martian carbon-dioxide atmosphere.

Put your answers in the chat.

Sampling and Caching

MARS 2020 ROVER Depot Caching Strategy

1 cm

а

- Landing SiteRegion of Interest
- ---- Sample Tube

----- Primary Mission ----- Extended Mission

Flight sample tube handling during TVAC testing

Rover will drill core samples to be returned to Earth

These extraterrestrial samples are curated by NASA. But studied by scientists all over the world!

https://mars.nasa.gov/resources/25473/perseverance-arrives-at-mars-feb-18-2021-mission-trailer/

Fun Fact: Well-known "secret" Jezero crater

A rover traverse outside the Jezero to Midway would allow us explore much of the 3rd landing site.

Choice 3: NE Syrtis

Figure 1: Region and suggested extended mission rover paths outside Jezero crater. Color coding indicate 3 paths that afford high priority science and sampling objectives in Nili Planum. After exiting

Fun Fact: Career path of Dr. Abigail Fraeman from high school to Deputy Project Scientist (MER Mission)

